PAPER II MATHEMATICS

Q1. If
$$x + \frac{1}{x} = r_3$$
 then $x^3 + \frac{1}{x_3}$ is

- (a) 3
- (b) 3r₃
- (c) r₃
- (d) 0

Q2. One third of a number is greater then one fourth of its successor by 1, find the number

- (a) 15
- (b) 20
- (c) 5
- (d) 25

Q3. If $2^{x=8^{y+1}}$ & $9y=3^{x-9}$ then y in

- (a) 6
- (b) 3
- (c) 4
- (d) 9

Q4. The sum of two numbers is 24 & the sum of their reciprocal is $\frac{1}{5}$, find their product

- (a) 80 (c) 60 (d) 40
- Q5. $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)$ K K K K $\left(1-\frac{1}{n}\right) = ?$ (a) $\frac{1}{n}$ (b) $\frac{2x-1}{n}$ (c) $n\left(\frac{n+1}{n}\right)$ (d) None of these
- Q6. In two similar triangle ABC & PQR, if their corresponding altitudes AD & PS are in ratio of 4:9, find the ratio of the Area of \triangle ABC to that of \triangle PQR.
 - (a) 16:81
 - (b) 32:92
 - (c) 33:94
 - (d) None of these
- Q7. Five year hence, father's age will be 3 times then the age of his son. Five years ago, father was 7 times as old as his son. Find their present age ?
 - (a) 10, 40
 - (b) 5, 50
 - (c) 3, 30
 - (d) None of these

A ONE INSTITUTE – A SYNONYM TO SUCCESS, OFFICE – SCO 322, SECTOR 40 D, CHANDIGARH

Q8. If $\alpha \& \beta$ be the root of the equation $x^2 - px + 9$		– px + 9
	(a) $p^2 - 2q$	(b) $p^2 + 2q$
	(c) $p^2 - q^2$	(d) None of these
Q9.	The value of $\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \left(\frac{x^c}{x^a}\right)^{c-b+c}$	+ <i>a</i> =?
	(a) 1	(b) 0
	(c) x^{abc}	(d) None of these
Q10.	IF $x + y = 12$, the maximum value of the transformation of transformation	e product of xy is
	(a) 26	(b) 36
	(c) 30	(d) None of these

Q11. Divide 50 into two parts x & y so that the sum of their reciprocals is $\frac{1}{12}$ and the parts are

(a) 30, 20	(b) 20, 30
	(d) 40 20

- Q12. A man buys mangoes paying one variety Rs. 320 to 240 & another variety of 640 to 400. He mixes & sells them at16 mangoes for Rs. 30. Find the percentage of profit?
- Q13. Two taps A & B take 20 minutes & 30 minutes to fill a cistern independently. The cistern can filled in 40 minutes with the taps A & B & the waste pipe are open altogether. If the taps are closed, calculate the time taken by the discharging outlet to empty the full cistern.
 - (a) 10 minutes
 - (b) 15 minutes
 - (c) 20 minutes
 - (d) None of these
- Q14. The price of sugar has decreased by 20%, by what% are the consumption of the sugar be increased in a house so that there is no decrease in the expenditure on the sugar
- Q15. Ram Babu deposits Rs. 280. Consisting of one rupee 50 paise & 10 paise coins which are in the ratio of 3:4:20. The number of 10 paise coins is

(a) 400	(b) 300
(c) 200	(d) None of these

- Q16. A man borrows Rs. 2500 at 10% pa simple interest. He lends it in the same year & at the same time at 15% pa for 2 years compound annually. Find the C.I ?
- Q17. The area of a square inscribed inside a circle of a radius is (a) $2r^2$ (b) r^2 (c) $1r^2$ (d) None of these

Q18. The least number of square slab of side 1.25 which can be fitted in a varendah of 25 × 20 m is

(a) 320 (b) 340

- (c) 280 (d) 200
- Q19. While going for Station A to Station B a train traveled at a speed 100 km/h & 150 km/h during return. The average speed of train
 - (a) 120
 - (b) 180
 - (c) 130
 - (d) 140
- Q20. While going for station A to station B a train travelled at a speed 100 km/hr and 150 km/hr during return. The average speed of train
 - (a) 120
 - (b) 180
 - (c) 130
 - (d) 140
- Q21. The sum of length of minute hand of a clock is 14 cm. Find the area of swept by the minute hand in one minute.

(a) $10\frac{4}{5}$	(b) $5\frac{4}{5}$
(c) $6\frac{4}{15}$	(d) None of these

- Q22. In fig. TAS is a tangent to the circle with center at O at a point A if $\angle OBA = 32^{\circ}$, find the value of x and y.
 - (a) 40°
 - (b) 58°
 - (c) 32°
 - (d) None of these

Q23. Find the mean, mode and median

133, 73, 89, 108, 94, 140, 94, 85, 100, 120

- Q24. A hemi spherical bowl of internal diameter 36 cm contains a liquid in a cylindrical bottles of radius 3 cm and height 6 cm. How many bottled required
 - (a) 72
 - (b) 36
 - (c) 54
 - (d) None of these

~ • •		$\cos\theta$	$\sin\theta$	$\cos(90+\theta)$
Q25.	The value of	$\overline{\sin(90+\theta)}$	$\sin(180+\theta)$	$\tan \theta$
	Is equal to			
	(a) 1			(b) 2
	(c) 3			(d) 4

Q26.	Which figure has the greatest area		
	(a) Triangle	(b) Rectangular	
	(c) Hexagon	(d) Circular	

Q27. $\sin^2 (90 - \theta) + \cos^2 (90 - \theta) = ?$ (a) 1 (b) 0 (c) $\sin^2 \theta - \cos^2 \theta$ (d) None of these

Q28.	If $\cos\theta + \sin\theta = \sqrt{2}\cos\theta$, then value of $\cos\theta - \sin\theta = ?$		
	(a) $\sqrt{2} \sin \theta$	(b) 0	
	(c) $\sqrt{2} \cos\theta$	(d) $2 \sin \theta$	

Q29. A shop keeper buys a number of books for Rs 80. If he had to bought 4 more books for the same amount, each book would have cost him Rs 1/ – less. How many books did he buy?

(a) 6 (b) 10 (c) 15 (d) 20

Q30. If
$$\frac{P}{9} = 3 + \frac{1}{4 + \frac{1}{1 + \frac{1}{1$$

5

(a) 93/29

```
(b) 47/15
```

```
(c) 101/49
```

(d) 55/47

Q31. If (x, y) are complex numbers then $\sqrt{x^2 + y^2}$ is called its modulus. The modulli of a complex number and its conjugate

- (a) are always equal
- (b) are always different
- (c) are off and on equal
- (d) None of these.