Mole Concept

Introduction:

There are a large number of objects around us which we can see and feel.
Anything that occupies space and has mass is called matter.
Ancient Indian and Greek Philosopher's beleived that the wide variety of object around us are made from combination of five basic elements: Earth, Fire, Water, Air and Sky.
The Indian Philosopher kanad $(600 \mathrm{BC})$ was of the view that matter was composed of very small, indivisible particle called "parmanus".
Ancient Greek Philosophers also believed that all matter was composed of tiny building blocks which were hard and indivisible.
The Greek philosopher Democritus named these building blocks as atoms, meaning indivisible.
All these people have their philosophical view about matter, they were never put to experimental tests, nor ever explain any scientific truth.
It was John Dalton who firstly developed a theory on the structure of matter, later on which is known as Dalton's atomic theory.

Dalton's Atomic Theory :

- Matter is made up of very small indivisible particles called atoms.
- All the atoms of a given element are identical in all respect i.e. mass, shape, size, etc.
- Atoms cannot be created or destroyed by any chemical process.
- Atoms of different elements are different in nature.

Classification of matter

Basic Definitions

Relative atomic mass :
One of the most important concept come out from Dalton's atomic theory was that of relative atomic mass or relative atomic weight. This is done by expressing mass of one atom with respect to a fixed standard. Dalton used hydrogen as the standard $(\mathrm{H}=1)$. Later on oxygen $(\mathrm{O}=16)$ replaced hydrogen as the reference. Therefore relative atomic mass is given as

On hydrogen scale :

Relative atomic mass $($ R.A.M $)=\frac{\text { Mass of one atom of an element }}{\text { mass of one hydrogen atom }}$
On oxygen scale :
Relative atomic mass $\left(\right.$ R.A.M) $=\frac{\text { Mass of one atom of an element }}{\frac{1}{16} \times \text { mass of one oxygen atom }}$

O The present standard unit which was adopted internationally in 1961, is based on the mass of one carbon-12 atom.

Relative atomic mass $($ R.A.M $)=\frac{\text { Mass of one atom of an element }}{\frac{1}{12} \times \text { mass of one } C-12 \text { atom }}$

Atomic mass unit (or amu) :

The atomic mass unit (amu) is equal to $\left(\frac{1}{12}\right)^{\text {th }}$ mass of one atom of carbon-12 isotope.
$\therefore \quad 1 \mathrm{amu}=\frac{1}{12} \times$ mass of one C-12 atom
\simeq mass of one nucleon in $\mathrm{C}-12$ atom.
$=1.66 \times 10^{-24} \mathrm{gm}$ or $1.66 \times 10^{-27} \mathrm{~kg}$
O one amu is also called one Dalton (Da).
O Today, amu has been replaced by ' u ' which is known as unified mass

Atomic \& molecular mass:

It is the mass of 1 atom of a substance it is expressed in amu.

O Atomic mass $=$ R.A.M $\times 1 \mathrm{amu}$
Relative molecular mass $=\frac{\text { mass of one molecule of the subs tance }}{\frac{1}{12} \times \text { mass of one }- \text { C-12atom }}$
O Molecular mass = Relative molecular mass $\times 1 \mathrm{amu}$

Note : Relative atomic mass is nothing but the number of nucleons present in the atom.

Solued Examples

```
Example-1 Find the relative atomic mass of ' \(O\) ' atom and its atomic mass.
Solution
The number of nucleons present in ' \(O\) ' atom is 16 . relative atomic mass of ' \(O\) ' atom \(=16\).
Atomic mass \(=\) R.A.M \(\times 1 \mathrm{amu}=16 \times 1 \mathrm{amu}=16 \mathrm{amu}\)
```


Mole : The Mass / Number Relationship

Mole is a chemical counting SI unit and defined as follows :
A mole is the amount of a substance that contains as many entities (atoms, molecules or other particles) as there are atoms in exactly 0.012 kg (or 12 gm) of the carbon-12 isotope.
From mass spectrometer we found that there are 6.023×10^{23} atoms present in 12 gm of C - 12 isotope.
The number of entities in 1 mol is so important that it is given a separate name and symbol known as Avogadro constant denoted by N_{A}.
i.e. on the whole we can say that 1 mole is the collection of 6.02×10^{23} entities. Here entities may represent atoms, ions, molecules or even pens, chair, paper etc also include in this but as this number $\left(\mathrm{N}_{\mathrm{A}}\right)$ is very large therefore it is used only for very small things.

HOW BIG IS A MOLE ?

O Note : In modern practice gram-atom and gram-molecule are termed as mole.

Gram Atomic Mass :

The atomic mass of an element expressed in gram is called gram atomic mass of the element.

or

It is also defined as mass of 6.02×10^{23} atoms.
or
It is also defined as the mass of one mole atoms.
For example for oxygen atom :
Atomic mass of ' O ' atom = mass of one ' O ' atom = 16 amu
gram atomic mass $=$ mass of 6.02×10^{23} ' O ' atoms

$$
\begin{aligned}
&=16 \mathrm{amu} \times 6.02 \times 10^{23} \\
&=16 \times 1.66 \times 10^{-24} \mathrm{~g} \times 6.02 \times 10^{23}=16 \mathrm{~g} \\
&\left(\because \quad 1.66 \times 10^{-24} \times 6.02 \times 10^{23} \simeq 1\right)
\end{aligned}
$$

Solved Examples

```
Example-2 How many atoms of oxygen are theirin 16 g oxygen.
Solution Let x atoms of oxygen are present
    So, 16 \times 1.66 \times10-24 }\times\textrm{x}=16\textrm{g
    1.66 \times10-24}=\mp@subsup{N}{A}{
```


Gram molecular mass :

The molecular mass of a substance expressed in gram is called the gram-molecular mass of the substance.
or
It is also defined as mass of 6.02×10^{23} molecules
or
It is also defined as the mass of one mole molecules.
For example for ' O_{2} ' molecule :
Molecular mass of ' O_{2} ' molecule = mass of one ' O_{2} ' molecule

$$
=2 \times \text { mass of one ' } \mathrm{O} \text { ' atom }
$$

$=2 \times 16 \mathrm{amu}$
$=32 \mathrm{amu}$
gram molecular mass $=$ mass of 6.02×10^{23} ' O_{2} ' molecules $=32 \mathrm{amu} \times 6.02 \times 10^{23}$ $=32 \times 1.66 \times 10^{-24} \mathrm{gm} \times 6.02 \times 10^{23}=32 \mathrm{gm}$

Example-3 The molecular mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 98 amu . Calculate the number of moles of each element in 294 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Solution Gram molecular mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=98 \mathrm{gm}$
moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{294}{98}=3$ moles
$\mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathrm{H}$
One molecule
$1 \times \mathrm{N}_{\mathrm{A}}$
\therefore one mole
$\therefore 3$ mole

2 atom
$2 \times N_{A}$ atoms
2 mole
6 mole

S
one atom
$1 \times N_{A}$ atoms one mole 3 mole

0
4 atom $4 \times N_{A}$ atoms
4 mole 12 mole

Gay-Lussac's Law of Combining Volume :

According to him elements combine in a simple ratio of atoms, gases combine in a simple ratio of their volumes provided all measurements should be done at the same temperature and pressure

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g}) \\
& 1 \mathrm{vol}
\end{aligned} \underset{\substack{\mathrm{Cl}_{2}(\mathrm{~g}) \\
1 \mathrm{vol}}}{2 \mathrm{HCl}} \underset{2 \mathrm{kol}}{2 \mathrm{HCl}}
$$

Avogadro's hypothesis :

Equal volume of all gases have equal number of molecules (not atoms) at same temperature and pressure condition.
S.T.P. (Standard Temperature and Pressure)

At S.T.P. condition : temperature $=0^{\circ} \mathrm{C}$ or 273 K
pressure $=1 \mathrm{~atm}=760 \mathrm{~mm}$ of Hg
and volume of one mole of gas at STP is found to be experimentally equal to 22.4 litres which is known as molar volume.

Note: Measuring the volume is equivalent to counting the number of molecules of the gas.

-_Solved Examples

Example-4 Calculate the volume in litres of 20 g hydrogen gas at STP.

$$
\begin{aligned}
& \text { Solution No. of moles of hydrogen gas }=\frac{\text { Mass }}{\text { Molecular mass }}=\frac{20 \mathrm{gm}}{2 \mathrm{gm}}=10 \mathrm{~mol} \\
& \text { volume of hydrogen gas at STP }=10 \times 22.4 \mathrm{lt} .
\end{aligned}
$$

Y-map : Interconversion of mole - volume, mass and number of particles :

The laws of chemical combination :

Atoine Lavoisier, J ohn Dalton and other scientists formulate certain law concerning the composition of matter and chemical reactions. These laws are known as the law of chemical combination.

(i) The law of conservation of mass :

In a chemical change total mass remains conserved.
i.e. mass before reaction is always equal to mass after reaction.

Solved Examples

$$
\begin{array}{llll}
\text { Example-5 } & \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow & \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\text { Solution } & & \mathrm{H}_{2}(\mathrm{~g}) & + \\
& & \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow & \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \text { Before reaction initially } 1 \text { mole } & \frac{1}{2} \text { mole } & 0 \\
& \text { After the reaction } & 0 & 0
\end{array}
$$

(ii) Law of constant or Definite proportion :

All chemical compounds are found to have constant composition irrespective of their method of preparation or sources.
Example : In water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, Hydrogen and Oxygen combine in $2: 1$ molar ratio, this ratio remains constant whether it is tap water, river water or sea water or produced by any chemical reaction.

```
Solued Examples
Example-6 \(\quad 1.80 \mathrm{~g}\) of a certain metal burnt in oxygen gave 3.0 g of its oxide. 1.50 g of the same metal heated in steam gave 2.50 g of its oxide. Show that these results illustrate the law of constant proportion.
Solution In the first sample of the oxide,
Wt. of metal \(=1.80 \mathrm{~g}\),
\(W \mathrm{t}\). of oxygen \(=(3.0-1.80) \mathrm{g}=1.2 \mathrm{~g}\)
\(\therefore \quad \frac{\text { wt. of metal }}{\text { wt.of oxygen }}=\frac{1.80 \mathrm{~g}}{1.2 \mathrm{~g}}=1.5\)
In the second sample of the oxide,
Wt. of metal \(=1.50 \mathrm{~g}\),
Wt. of oxygen \(=(2.50-1.50) \mathrm{g}=1 \mathrm{~g}\).
\(\frac{\text { wt. of metal }}{\text { wt. of oxygen }}=\frac{1.50 \mathrm{~g}}{1 \mathrm{~g}}=1.5\)
```

Thus, in both samples of the oxide the proportions of the weights of the metal and oxygen a fixed. Hence, the results follow the law of constant proportion.
(iii) The law of multiple proportion :

When one element combines with the other element to form two or more different compounds, the mass of one element, which combines with a constant mass of the other, bear a simple ratio to one another.

Note: Simple ratio here means the ratio between small natural numbers, such as $1: 1,1: 2,1: 3$, later on this simple ratio becomes the valency and then oxidation state of the element.
See oxidation number of carbon also have same ratio $1: 2$ in both the oxide.

Example-7 Carbon is found to form two oxides, which contain 42.9% and 27.3% of carbon respectively. Show that these figures illustrate the law of multiple proportions.

Solution Step-1

To calculate the percentage composition of carbon and oxygen in each of the two oxides.

	First oxide	Second oxide	
Carbon	42.9%	27.3%	(Given)
Oxygen	57.1%	72.7%	
(by difference)			

Step-2

To calculate the masses of carbon which combine with a fixed mass i.e., one part by mass of oxygen in each of the two oxides.
In the first oxide, 57.1 parts by mass of oxygen combine with carbon $=42.9$ parts.
$\therefore \quad 1$ part by mass of oxygen will combine with carbon $=\frac{42.9}{57.1}=0.751$.
In the second oxide. 72.7 parts by mass of oxygen combine with carbon $=27.3$ parts.
$\therefore \quad 1$ part by mass of oxygen will combine with carbon $=\frac{27.3}{72.7}=0.376$

Step-3.

To compare the masses of carbon which combine with the same mass of oxygen in both the oxides. The ratio of the masses of carbon that combine with the same mass of oxygen (1 part) is . $0.751: 0.376$ or $2: 1$
Since this is simple whole number ratio, so the above data illustrate the law of multiple proportions.

Percentage Composition :

Here we are going to find out the percentage of each element in the compound by knowing the molecular formula of compound.
We know that according to law of definite proportions any sample of a pure compound always possess constant ratio with their combining elements.

-_Solved Examples

Example-8 Every molecule of ammonia always has formula NH_{3} irrespective of method of preparation or sources. i.e. 1 mole of ammonia always contains 1 mol of N and 3 mole of H . In other words $17 \mathrm{gm}^{\mathrm{gm}} \mathrm{NH}_{3}$ always contains 14 gm of N and 3 gm of H . Now find out \% of each element in the compound.

Solution Mass $\%$ of \mathbf{N} in $\mathrm{NH}_{3}=\frac{\text { Mass of } \mathrm{N} \text { in } 1 \mathrm{~mol} \mathrm{NH}_{3}}{\text { Mass of } 1 \mathrm{~mol} \mathrm{of} \mathrm{NH}_{3}} \times 100=\frac{14 \mathrm{gm}}{17} \times 100=82.35 \%$
Mass \% of \mathbf{H} in $\mathbf{N H}_{3}=\frac{\text { Mass of } \mathrm{H} \text { is } 1 \mathrm{~mol} \mathrm{NH}_{3}}{\text { Mass of } 1{\mathrm{~mole} \mathrm{of} \mathrm{NH}_{3}}_{\text {Ma }} \times 100=\frac{3}{17} \times 100=17.65 \% ~}$

Empirical and molecular formula :

We have just seen that knowing the molecular formula of the compound we can calculate percentage composition of the elements. Conversely if we know the percentage composition of the elements initially, we can calculate the relative number of atoms of each element in the molecules of the compound. This gives us the empirical formula of the compound. Further if the molecular mass is known then the molecular formula can easily be determined.

The empirical formula of a compound is a chemical formula showing the relative number of atoms in the simplest ratio. An empirical formula represents the simplest whole number ratio of various atoms present in a compound. The molecular formula gives the actual number of atoms of each element in a molecule. The molecular formula shows the exact number of different types of atoms present in a molecule of a compound.
The molecular formula is an integral multiple of the empirical formula.
i.e. molecular formula $=$ empirical formula $\times n$
where $\mathrm{n}=\frac{\text { molecular formula mass }}{\text { empirical formula mass }}$

Solved Examples

Example-9 Acetylene and benzene both have the empirical formula CH . The molecular masses of acetylene and benzene are 26 and 78 respectively. Deduce their molecular formulae.

Solution

$\because \quad$ Empirical Formula is CH
Step-1 The empirical formula of the compound is CH
$\therefore \quad$ Empirical formula mass $=(1 \times 12)+1=13$.
Molecular mass = 26
Step-2 To calculate the value of ' n '
$\mathrm{n}=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}=\frac{26}{13}=2$
Step-3 To calculate the molecular formula of the compound.
Molecular formula $\quad \mathrm{n} \times$ (Empirical formula of the compound $)$

$$
=2 \times \mathrm{CH}=\mathrm{C}_{2} \mathrm{H}_{2}
$$

Thus the molecular formula is $\mathbf{C}_{2} \mathbf{H}_{2}$
Similarly for benzene
To calculate the value of ' n
$\mathrm{n}=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}=\frac{78}{13}=6$
thus the molecular formula is $6 \times \mathrm{CH}=\mathbf{C}_{6} \mathbf{H}_{6}$
Example-10 An organic substance containing carbon, hydrogen and oxygen gave the following percentage composition. $\mathrm{C}=40.684 \% ; \mathrm{H}=5.085 \%$ and $\mathrm{O}=54.228 \%$
The molecular weight of the compound is 118 gm . Calculate the molecular formula of the compound.

Solution

Step-1
To calculate the empirical formula of the compound.

Element	Symbol	Percentage of element	At. mass of element	Relative no. of atoms $=\frac{\text { Percentage }}{\text { At. mass }}$	Simplest atomic ratio	Simplest whole no. atomic ratio
Carbon	C	40.687	12	$\frac{40.687}{12}=3.390$	$\frac{3.390}{3.389}=1$	2
Hydrogen	H	5.085	1	$\frac{5.085}{1}=5.085$	$\frac{5.085}{3.389}=1.5$	3
Oxygen	O	54.228	16	$\frac{54.228}{16}=3.389$	$\frac{3.389}{3.389}=1$	2

$\therefore \quad$ Empirical Formula is $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
Step-2 To calculate the empirical formula mass.
The empirical formula of the compound is $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
$\therefore \quad$ Empirical formula mass $=(2 \times 12)+(3 \times 1)+(2 \times 16)=59$.

Step-3 To calculate the value of ' n '
$\mathrm{n}=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}=\frac{118}{59}=2$
Step-4 To calculate the molecular formula of the salt.
Molecular formula $\quad=\mathrm{n} \times($ Empirical formula $)=2 \times \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$ Thus the molecular formula is $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$.

Chemical Reaction :

It is the process in which two or more than two substances interact with each other where old bonds are broken and new bonds are formed.

Chemical Equation :

All chemical reaction are represented by chemical equations by using chemical formula of reactants and products. Qualitatively a chemical equation simply describes what the reactants and products are. However, a balanced chemical equation gives us a lot of quantitative information. Mainly the molar ratio in which reactants combine and the molar ratio in which products are formed.

Attributes of a balanced chemical equation:

(a) It contains an equal number of atoms of each element on both sides of equation.(POAC)
(b) It should follow law of charge conservation on either side.
(c) Physical states of all the reagents should be included in brackets.
(d) All reagents should be written in their standard molecular forms (not as atoms)
(e) The coefficients give the relative molar ratios of each reagent.

Solved Examples

Example-11 Write a balance chemical equation for following reaction :

When potassium chlorate $\left(\mathrm{KClO}_{3}\right)$ is heated it gives potassium chloride (KCl) and oxygen $\left(\mathrm{O}_{2}\right)$.
Solution $\quad \mathrm{KClO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{KCl}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$ (unbalanced chemical equation)
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$ (balanced chemical equation)
Remember a balanced chemical equation is one which contains an equal number of atoms of each element on both sides of equation.

Interpretation of balanced chemical equations :

Once we get a balanced chemical equation then we can interpret a chemical equation by following ways

- Mass - mass analysis

Mass - volume analysis
Mole - mole analysis

- Mole - mole analysis
- Vol - Vol analysis (separately discussed as eudiometry or gas analysis)

Now you can understand the above analysis by following example

- Mass-mass analysis :

Consider the reaction
$2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$ According to stoichiometry of the reaction
mass-mass ratio: $2 \times 122.5: 2 \times 74.5: 3 \times 32$
or $\quad \frac{\text { Mass of } \mathrm{KClO}_{3}}{\text { Mass of } \mathrm{KCl}}=\frac{2 \times 122.5}{2 \times 74.5}$

$$
\frac{\text { Mass of } \mathrm{KClO}_{3}}{\text { Mass of } \mathrm{O}_{2}}=\frac{2 \times 122.5}{3 \times 32}
$$

Solved Examples

Example-12 367.5 gram $\mathrm{KClO}_{3}(\mathrm{M}=122.5)$ when heated. How many gram KCl and oxygen is produced. Solution Balance chemical equation for heating of KClO_{3} is

$$
\begin{array}{ll}
& 2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} \\
\text { mass-mass ratio : } & 2 \times 122.5 \mathrm{gm}: 2 \times 74.5 \mathrm{gm}: 3 \times 32 \mathrm{gm} \\
& \frac{\text { mass of } \mathrm{KClO}_{3}}{\text { mass of } \mathrm{KCl}}=\frac{2 \times 122.5}{2 \times 74.5} \Rightarrow \frac{367.5}{\mathrm{~W}}=\frac{122.5}{74.5}
\end{array}
$$

$\mathrm{W}=\mathbf{3} \times \mathbf{7 4 . 5} \mathbf{=} \mathbf{2 2 3 . 5} \mathbf{~ g m}$
$\frac{\text { Mass of } \mathrm{KClO}_{3}}{\text { Mass of } \mathrm{O}_{2}}=\frac{2 \times 122.5}{3 \times 32} \Rightarrow \frac{367.5}{\mathrm{~W}}=\frac{2 \times 122.5}{3 \times 32}$
$\mathrm{W}=144 \mathrm{gm}$

- Mass - volume analysis :

Now again consider decomposition of KClO

$$
2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

mass volume ratio : $2 \times 122.5 \mathrm{gm}: 2 \times 74.5 \mathrm{gm}: 3 \times 22.4 \mathrm{lt}$. at STP we can use two relation for volume of oxygen

$$
\begin{equation*}
\frac{\text { Mass of } \mathrm{KClO}_{3}}{\text { volume of } \mathrm{O}_{2} \text { at STP }}=\frac{2 \times 122.5}{3 \times 22.4 \mathrm{It}} \tag{i}
\end{equation*}
$$

and $\frac{\text { Mass of } \mathrm{KCl}}{\text { volume of } \mathrm{O}_{2} \text { at } \mathrm{STP}}=\frac{2 \times 74.5}{3 \times 22.4 \mathrm{It}}$

Solved Examples

$$
\begin{array}{ll}
\begin{array}{l}
\text { Example-13 } \\
\text { Solution }
\end{array} & \begin{array}{l}
367.5 \mathrm{gm} \mathrm{KClO}_{3}(M=122.5) \text { when heated, how many litre of oxygen gas is produced at STP. } \\
\text { You can use here equation (1) } \\
\\
\\
\\
\\
\text { valums of of } \mathrm{KClO}_{3} \text { at STP }
\end{array}=\frac{2 \times 122.5}{3 \times 22.4 \mathrm{lt}} \\
& \Rightarrow \quad \frac{367.5}{\mathrm{~V}}=\frac{2 \times 122.5}{3 \times 22.4 \mathrm{lt}} \\
\mathrm{~V}=3 \times 3 \times 11.2 & \Rightarrow \quad \mathrm{~V}=100.8 \mathrm{lt}
\end{array}
$$

- Mole-mole analysis :

This analysis is very much important for quantitative analysis point of view. Students are advised to clearly understand this analysis.
Now consider again the decomposition of KClO_{3}.

$$
2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

In very first step of mole-mole analysis you should read the balanced chemical equation like $\mathbf{2}$ moles KClO_{3} on decomposition gives you $\mathbf{2}$ moles KCl and $\mathbf{3}$ moles \mathbf{O}_{2} and from the stoichiometry of reaction we can write

$$
\frac{\text { Moles of } \mathrm{KClO}_{3}}{2}=\frac{\text { Moles of } \mathrm{KCl}}{2}=\frac{\text { Moles of } \mathrm{O}_{2}}{3}
$$

Now for any general balance chemical equation like

$$
a A+b B \longrightarrow c C+d D
$$

you can write.
$\frac{\text { Moles of } A \text { reacted }}{a}=\frac{\text { moles of } B \text { reacted }}{b}=\frac{\text { moles of } C \text { produced }}{c}=\frac{\text { moles of } D \text { produced }}{d}$

Note : In fact mass-mass and mass-vol analysis are also interpreted in terms of mole-mole analysis you can use following chart also.

Limiting reagent :

The reactant which is consumed first and limits the amount of product formed in the reaction, and is therefore, called limiting reagent.
Limiting reagent is present in least stoichiometric amount and therefore, controls amount of product.
The remaining or left out reactant is called the excess reagent.
When you are dealing with balance chemical equation then if number of moles of reactants are not in the ratio of stoichiometric coefficient of balanced chemical equation, then there should be one reactant which is limiting reactant.

Solved Examples

Example-14 Three mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is reacted with 6 moles of HCl solution. Find the volume of CO_{2} gas produced at STP. The reaction is

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Solution

$$
\begin{array}{lll}
\text { From the reaction : } & \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\text { given moles } & 3 \mathrm{~mol} & 6 \mathrm{~mol} \\
\text { given mole ratio } & 1 & : \\
\text { Stoichiometric coefficient ratio } & 1 & : \\
\text { Sol }
\end{array}
$$

See here given moles of reactant are in stoichiometric coefficient ratio therefore none reactant left over. Now use Mole-mole analysis to calculate volume of CO_{2} produced at STP

$$
\frac{\text { Moles of } \mathrm{Na}_{2} \mathrm{CO}_{3}}{1}=\frac{\text { Mole of } \mathrm{CO}_{2} \text { Produced }}{1}
$$

Moles of CO_{2} produced $=3$
volume of CO_{2} produced at $\mathrm{STP}=3 \times 22.4 \mathrm{~L}=67.2 \mathrm{~L}$
6 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is reacted with 4 moles of HCl solution. Find the volume of CO_{2} gas produced at STP. The reaction is

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Solution

From the reaction :

 given mole of reactant

6 : 4 given molar ratio 3 : 2 Stoichiometric coefficient ratio 1 : 2
See here given number of moles of reactants are not in stoichiometric coefficient ratio. Therefore there should be one reactant which consumed first and becomes limiting reagent.
But the question is how to find which reactant is limiting, it is not very difficult you can easily find it. According to the following method.

How to find limiting reagent :

Step : I Divide the given moles of reactant by the respective stoichiometric coefficient of that reactant.
Step : II See for which reactant this division come out to be minimum. The reactant having minimum value is limiting reagent for you.
Step : III Now once you find limiting reagent then your focus should be on limiting reagent From Step I \& II $\quad \mathrm{Na}_{2} \mathrm{CO}_{3} \quad \mathrm{HCl}$
$\frac{6}{1}=6 \quad \frac{4}{2}=2 \quad$ (division is minimum)
$\therefore \quad \mathrm{HCl}$ is limiting reagent
From Step III
From $\frac{\text { Mole of } \mathrm{HCl}}{2}=\frac{\text { Moles of } \mathrm{CO}_{2} \text { produced }}{1}$
$\therefore \quad$ mole of CO_{2} produced $=2$ moles
$\therefore \quad$ volume of CO_{2} produced at S.T.P. $=2 \times 22.4=44.8 \mathrm{It}$.

Principle of Atom Conservation (POAC) :

POAC is conservation of mass. Atoms are conserved, moles of atoms shall also be conserved in a chemical reaction (but not in nuclear reactions.)

This principle is fruitful for the students when they don't get the idea of balanced chemical equation in the problem.

The strategy here will be around a particular atom. We focus on a atom and conserve it in that reaction. This principle can be understand by the following example.

Consider the decomposition of $\mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow \mathrm{KCl}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \quad$ (unbalanced chemical reaction) Apply the principle of atom conservation (POAC) for K atoms.
Moles of K atoms in reactant $=$ moles of K atoms in products
or moles of K atoms in $\mathrm{KClO}_{3}=$ moles of K atoms in KCl .
Now, since 1 molecule of KClO_{3} contains 1 atom of K
or 1 mole of KClO_{3} contains 1 mole of K , similarly, 1 mole of KCl contains 1 mole of K .
Thus, moles of K atoms in $\mathrm{KClO}_{3}=1 \times$ moles of KClO_{3} and moles of K atoms in $\mathrm{KCl}=1 \times$ moles of KCl .
$\therefore \quad$ moles of $\mathrm{KClO}_{3}=$ moles of KCl
or $\frac{\text { wt. of } \mathrm{KClO}_{3} \text { in } \mathrm{g}}{\mathrm{mol} \text {. wt. of } \mathrm{KClO}_{3}}=\frac{\mathrm{wt} \text {. of } \mathrm{KCl} \text { in g }}{\mathrm{mol} \text {. wt. of } \mathrm{KCl}}$
O The above equation gives the mass-mass relationship between KClO_{3} and KCl which is important in stoichiometric calculations.

Again, applying the principle of atom conservation for O atoms, moles of O in $\mathrm{KClO}_{3}=3 \times$ moles of KClO_{3} moles of O in $\mathrm{O}_{2}=2 \times$ moles of O_{2}
$\therefore \quad 3 \times$ moles of $\mathrm{KClO}_{3}=2 \times$ moles of O_{2}
or $\quad 3 \times \frac{\text { wt. of } \mathrm{KClO}_{3}}{\mathrm{~mol} . w t . \text { of } \mathrm{KClO}_{3}}=2 \times \frac{\text { vol. of } \mathrm{O}_{2} \text { at NTP }}{\text { standard molar vol. (22.4 lt.) }}$

O The above equations thus gives the mass-volume relationship of reactants and products.

Solved Examples

Example-16

$27.6 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ was treated by a series of reagents so as to convert all of its carbon to $\mathrm{K}_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$. Calculate the weight of the product.
[mol. wt. of $\mathrm{K}_{2} \mathrm{CO}_{3}=138$ and mol. wt. of $\mathrm{K}_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}=698$]
Solution Here we have not knowledge about series of chemical reactions but we know about initial reactant and final product accordingly
$\mathrm{K}_{2} \mathrm{CO}_{3} \xrightarrow[\text { Steps }]{\text { Several }} \mathrm{K}_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$
Since C atoms are conserved, applying POAC for C atoms, moles of C in $\mathrm{K}_{2} \mathrm{CO}_{3}=$ moles of C in $\mathrm{K}_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$
$1 \times$ moles of $\mathrm{K}_{2} \mathrm{CO}_{3}=12 \times$ moles of $\mathrm{K}_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$
$\left(\because 1\right.$ mole of $\mathrm{K}_{2} \mathrm{CO}_{3}$ contains 1 moles of C$)$
$\frac{\text { wt. of } \mathrm{K}_{2} \mathrm{CO}_{3}}{\text { mol. wt.of } \mathrm{K}_{2} \mathrm{CO}_{3}}=12 \times \frac{\mathrm{wt} \text {. of the product }}{\mathrm{mol} \text {. wt.of product }}$
wt. of $K_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}=\frac{27.6}{138} \times \frac{698}{12}=11.6 \mathrm{~g}$

Miscellaneous :

- AVERAGE/ MEAN ATOMIC MASS :

The weighted average of the isotopic masses of the element's naturally occuring isotopes.
Mathematically, average atomic mass of $X\left(A_{x}\right)=\frac{a_{1} x_{1}+a_{2} x_{2}+\ldots .+a_{n} x_{n}}{100}$ Where :
$a_{1}, a_{2}, a_{3} \ldots \ldots .$. atomic mass of isotopes.
and $\quad x_{1}, x_{2}, x_{3} \ldots \ldots . .$. mole $\%$ of isotopes.

Solved Examples

Example-17 Naturally occuring chlorine is $75 \% \mathrm{Cl}^{35}$ which has an atomic mass of 35 amu and $25 \% \mathrm{Cl}^{137}$ which
has a mass of 37 amu . Calculate the average atomic mass of chlorine -
(A) 35.5 amu
(B) 36.5 amu
(C) 71 amu
(D) 72 amu

Solution
(A) Average atomic mass $=\frac{\% \text { of } I \text { isotope } x \text { its atoms mass }+\% \text { of Il isotope } x \text { its atomic mass }}{100}$

$$
=\frac{75 \times 35+25 \times 37}{100}=35.5 \mathrm{amu}
$$

Note: (a) In all calculations we use this mass. (b) In periodic table we report this mass only.

- MEAN MOLAR MASS OR MOLECULAR MASS:

The average molar mass of the different substance present in the container $=\frac{n_{1} M_{1}+n_{2} M_{2}+\ldots \ldots . n_{n} M_{n}}{n_{1}+n_{2}+\ldots . n_{n}}$.
Where:
M_{1}, M_{2}, M_{3} \qquad are molar masses. $n_{1}, n_{2}, n_{3} \ldots \ldots$. moles of substances.

Solved Examples

Example-18 The molar composition of polluted air is as follows :

Gas	At. wt.	mole percentage composition
Oxygen	16	16%
Nitrogen	14	80%
Carbon dioxide	-	03%
Sulphurdioxide	-	01%

What is the average molecular weight of the given polluted air? (Given, atomic weights of C and S are 12 and 32 respectively.

Solution $\quad M_{a v g}=\frac{\sum_{j=1}^{j=n} n_{j} M_{j}}{\sum_{j=1}^{j=n} n_{j}}$ Here $\sum_{j=1}^{j=n} n_{j}=100$
$\therefore M_{\mathrm{avg}}=\frac{16 \times 32+80 \times 28+44 \times 3+64 \times 1}{100}=\frac{512+2240+132+64}{100}=\frac{2948}{100}=29.48$ Ans.

Oxidation \& Reduction

Let us do a comparative study of oxidation and reduction :

Oxidation

1. Addition of Oxygen
e.g. $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
2. Removal of Hydrogen
e.g. $\mathrm{H}_{2} \mathrm{~S}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{S}$
3. Increase in positive charge
e.g. $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
4. Increase in oxidation number
$(+2) \quad(+4)$
e.g. $\mathrm{SnCl}_{2} \rightarrow \mathrm{SnCl}_{4}$
5. Removal of electron
e.g. $\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$

Reduction

1. Removal of Oxygen
e.g. $\mathrm{CuO}+\mathrm{C} \rightarrow \mathrm{Cu}+\mathrm{CO}$
2. Addition of Hydrogen
e.g. $\mathrm{S}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{~S}$
3. Decrease in positive charge
e.g. $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$
4. Decrease in oxidation number
e.g. $\stackrel{(+7)}{\mathrm{MnO}_{4}^{-}} \rightarrow \stackrel{(+2)}{\mathrm{Mn}^{2+}}$
5. Addition of electron
e.g. $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$

A ONE INSTITUTE - A SYNONYM TO SUCCESS, OFFICE - SCO 322, SECTOR 40 D, CHANDIGARH

Oxidation Number

- It is an imaginary or apparent charge developed over atom of an element when it goes from its elemental free state to combined state in molecules.
- It is calculated on basis of an arbitrary set of rules.
- It is a relative charge in a particular bonded state.
- In order to keep track of electron-shifts in chemical reactions involving formation of compounds, a more practical method of using oxidation number has been developed.
- In this method, it is always assumed that there is a complete transfer of electron from a less electronegative atom to a more electronegative atom.

Rules governing oxidation number

The following rules are helpful in calculating oxidation number of the elements in their different compounds. It is to be remembered that the basis of these rule is the electronegativity of the element.

- Fluorine atom :

Fluorine is most electronegative atom (known). It always has oxidation number equal to -1 in all its compounds

- Oxygen atom :

In general and as well as in its oxides, oxygen atom has oxidation number equal to -2.
In case of (i) peroxide (e.g. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Na}_{2} \mathrm{O}_{2}$) is -1 ,
(ii) super oxide (e.g. KO_{2}) is $-1 / 2$
(iii) ozonide (e.g. KO_{3}) is $-1 / 3$
(iv) in OF_{2} is $+2 \&$ in $\mathrm{O}_{2} \mathrm{~F}_{2}$ is +1

- Hydrogen atom :

In general, H atom has oxidation number equal to +1 . But in metallic hydrides (e.g. $\mathrm{NaH}, \mathrm{KH}$), it is -1 .

- Halogen atom :

In general, all halogen atoms ($\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) have oxidation number equal to -1 .
But if halogen atom is attached with a more electronegative atom than halogen atom, then it will show positive oxidation numbers.
e.g. $\mathrm{K}_{\mathrm{Cl}}^{+5} \mathrm{O}_{3}, \stackrel{+5}{\mathrm{HIO}_{3}}, \stackrel{+7}{\mathrm{H}} \mathrm{IO}_{4}, \mathrm{KBrO}_{3}^{+5}$

- Metals :
(a) Alkali metal ($\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \ldots . .$.) always have oxidation number +1
(b) Alkaline earth metal (Be , Mg , Ca) always have oxidation number +2 .
(c) Alüminium always has +3 oxidation number

Note: Metal may have negative or zero oxidation number

- Oxidation number of an element in free state or in allotropic forms is always zero e.g. $\stackrel{0}{\mathrm{O}}_{2}, \stackrel{0}{\mathrm{~S}_{8}}, \stackrel{0}{\mathrm{P}_{4}}, \stackrel{0}{\mathrm{O}_{3}}$
- Sum of the oxidation numbers of atoms of all elements in a molecule is zero. Sum of the oxidation numbers of atoms of all elements in an ion is equal to the charge on the ion. If the group number of an element in modern periodic table is \mathbf{n}, then its oxidation number may vary from
($\mathbf{n} \mathbf{- 1 0)}$ to ($\mathbf{n} \mathbf{- 1 8)}$ (but it is mainly applicable for p-block elements)
e.g. N - atom belongs to $15^{\text {th }}$ group in the periodic table, therefore as per rule, its oxidation number may vary from
-3 to $+5\left(\stackrel{-3}{\mathrm{~N}} \mathrm{H}_{3}, \stackrel{+2}{\mathrm{NO}}, \stackrel{+3}{\mathrm{~N}} \mathrm{O}_{3}, \stackrel{+4}{\mathrm{~N}} \mathrm{O}_{2}, \stackrel{+5}{\mathrm{~N}} \mathrm{O}_{5}\right)$
- The maximum possible oxidation number of any element in a compound is never more than the number of electrons in valence shell.(but it is mainly applicable for p-block elements)

Calculation of average oxidation number :

Solued Examples

Example-19 C alculate oxidation number of underlined element:
(a) $\mathrm{Na}_{2} \underline{\mathrm{~S}}_{2} \mathrm{O}_{3}$
(b) $\mathrm{Na}_{2} \underline{\mathrm{~S}}_{4} \mathrm{O}_{6}$

Solution. (a) Let oxidation number of S-atom is x. Now work accordingly with the rules given before .
$(+1) \times 2+(x) \times 2+(-2) \times 3=0$
$x=+2$
(b) Let oxidation number of S -atom is x

$$
\begin{array}{ll}
\therefore \quad & (+1) \times 2+(x) \times 4+(-2) \times 6=0 \\
& x=+2.5
\end{array}
$$

O It is important to note here that $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ have two S -atoms and there are four S -atom in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$. However none of the sulphur atoms in both the compounds have +2 or +2.5 oxidation number, it is the average of oxidation number, which reside on each sulphur atom. Therefore, we should work to calculate the individual oxidation number of each sulphur atom in these compounds.

Calculation of individual oxidation number

It is important to note that to calculate individual oxidation number of the element in its compound one should know the structure of the compound and use the following guidelines.

Formula :

Oxidation Number = Number of electrons in the valence shell -Number of electrons taken up after bonding
Guidelines: It is based on electronegativity of elements.

1. If there is a bond between similar type of atom and each atom has same type of hybridisation, then bonded pair electrons are equally shared by each element.
Example : Calculate oxidation number of each Cl -atom in Cl_{2} molecule

Structure :

I : Number of electrons in the valence shell $=7$.
Number of electrons taken up after bonding $=7$.
\therefore oxidation number $=7-7=0$.
II : similarly, oxidation number $=7-7=0$
2. If there is a bond between different type of atoms:
e.g. $\quad A-B$ (if B is more electronegative than A)

Then after bonding, bonded pair of electrons are counted with B - atom .
Example: Calculate oxidation number of each atom in HCl molecule

Structure :

Note : Electron of H -atom is now counted with Cl -atom, because Cl -atom is more electronegative than H atom

H : Number of electrons in the valence shell = 1
Number of electrons taken up after bonding $=0$
Oxidation number of $\mathrm{H}=1-0=+1$

CI : Number of electrons in the valence shell $=7$
Number of electrons taken up after bonding $=8$
Oxidation number of $\mathrm{Cl}=7-8=-1$

Solved Examples

Example-20 Calculate individual oxidation number of each S -atom in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (sodium thiosulphate) with the help of

 its structure .Solution.
Structure:

Note: I (central \mathbf{S}-atom) is $\mathbf{s p}^{\mathbf{3}}$ hybridised ($25 \% \mathbf{s}$-character) and II (terminal \mathbf{S}-atom) is $\mathbf{s p}^{\mathbf{2}}$ hydbridised ($33 \% \mathrm{~s}$-character). Therefore, terminal sulphur atom is more electronegative than central sulphur atom. Now, the shared pair of electrons are counted with terminal Satom.
$\therefore \quad \mathrm{I}, \mathrm{S}$-atom : Number of electrons in the valence shell $=6$
Number of electrons left after bonding $=0$
Oxidation number of central S-atom $=6-0=+6$
II, S-atom : Number of electrons in the valence shell $=6$
Number of electrons left after bonding $=8$
Oxidation number of terminal S-atom $=6-8=-2$
Now, you can also calculate Average Oxidation number of $S=\frac{6+(-2)}{2}=+2$ (as we have calculated before)

Miscellaneous Examples:

In order to determine the exact or individual oxidation number we need to take help from the structures of the molecules. Some special cases are discussed as follows:

- The structure of CrO_{5} is

From the structure, it is evident that in CrO_{5} there are two peroxide linkages and one double bond. The contribution of each peroxide linkage is -2 . Let the oxidation number of Cr is x .

$$
\therefore x+(-2) 2+(-2)=0 \text { or } x=6
$$

\therefore Oxidation number of $\mathrm{Cr}=+6$ Ans

From the structure, it is evident that in $\mathrm{H}_{2} \mathrm{SO}_{5}$, there is one peroxide linkage, two sulphur-oxygen double bonds and one OH group. Let the oxidation number of $\mathrm{S}=\mathrm{x}$.

| \therefore | $(+1)+(-2)+x+(-2) 2+(-2)+1=0$ |
| :--- | :--- | :--- |
| or | $\mathrm{x}+2-8=0 \quad$ or $-6=0$ |
| \therefore | Oxidation number of S in $\mathrm{H}_{2} \mathrm{SO}_{5}$ is +6 Ans. |

A ONE INSTITUTE - A SYNONYM TO SUCCESS, OFFICE - SCO 322, SECTOR 40 D, CHANDIGARH

Paradox of fractional oxidation number
Fractional oxidation number is the average of oxidation state of all atoms of element under examination and the structural parameters reveal that the atoms of element for whom fractional oxidation state is realised a actually present in different oxidation states. Structure of the species $\mathrm{C}_{3} \mathrm{O}_{2}, \mathrm{Br}_{3} \mathrm{O}_{8}$ and $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$ reveal the following bonding situations :

O The element marked with asterisk (*) in each species is exhibiting different oxidation number from rest of the atoms of the same element in each of the species. This reveals that in $\mathrm{C}_{3} \mathrm{O}_{2}$, two carbon atoms are present in +2 oxidation state each whereas the third one is present in zero oxidation state and the average is $+4 / 3$. However, the realistic picture is +2 for two terminal carbons and zero for the middle carbon.

$$
\begin{aligned}
& \mathrm{O}=\stackrel{+2}{\mathrm{C}}=\mathrm{C}^{0}=\stackrel{+2}{\mathrm{C}}=\mathrm{O} \\
& \text { Structure of } \mathrm{C}_{3} \mathrm{O}_{2} \\
& \text { (Carbon suboxide) }
\end{aligned}
$$

O Likewise in $\mathrm{Br}_{3} \mathrm{O}_{8}$, each of the two terminal bromine atoms are present in +6 oxidation state and the middle bromine is present in +4 oxidation state. Once again the average, that is different from reality, is $+16 / 3$.

Structure of $\mathrm{Br}_{3} \mathrm{O}_{8}$ (Tribromooctaoxide)
O In the same fashion, in the species $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$, average oxidation number of S is +2.5 , whereas the reality being $+5,0,0$ and +5 oxidation number respectively for respective sulphur atoms.

In general, the conclusion is that the idea of fractional oxidation state should be taken with care and the reality is revealed by the structures only.

Oxidising and reducing agent

- Oxidising agent or Oxidant :

Oxidising agents are those compounds which can oxidise others and reduce itself during the chemical reaction. Those reagents in which for an element, oxidation number decreases or which undergoes gain of electrons in a redox reaction are termed as oxidants.
e.g. $\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{HNO}_{3}$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ etc are powerful oxidising agents .

- Reducing agent or Reductant :

Reducing agents are those compounds which can reduce other and oxidise itself during the chemical reaction. Those reagents in which for an element, oxidation number increases or which undergoes loss of electrons in a redox reaction are termed as reductants.
e.g. $\mathrm{KI}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ etc are the powerful reducing agents.

Note : There are some compounds also which can work both as oxidising agent and reducing agent e.g. $\quad \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NO}_{2}^{-}$

HOW TO IDENTIFY WHETHER A PARTICULAR SUBSTANCE IS AN OXIDISING OR A REDUCING AGENT

Redox reaction

A reaction in which oxidation and reduction simultaneously take place is called a redox reaction
In all redox reactions, the total increase in oxidation number must be equal to the total decrease in oxidation number.
e.g. $10 \stackrel{+2}{\mathrm{FeSO}_{4}}+2 \mathrm{KM} \stackrel{+5}{\mathrm{MnO}} 4_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 5 \stackrel{+3}{\mathrm{Fe}_{2}}\left(\mathrm{SO}_{4}\right)_{3}+2 \stackrel{+2}{\mathrm{Mn} \mathrm{SO}_{4}}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$

Disproportionation Reaction :

A redox reaction in which same element present in a particular compound in a definite oxidation state is oxidized as well as reduced simultaneously is a disproportionation reaction.
Disproportionation reactions are a special type of redox reactions. One of the reactants in a disproportionation reaction always contains an element that can exist in at least three oxidation states. The element in the form of reacting substance is in the intermediate oxidation state and both higher and lower oxidation states of that element are formed in the reaction. For example

Consider the following reactions:

(a)

$$
\rightarrow 2 \mathrm{KCl}+30
$$

KClO_{3} plays a role of oxidant and reductant both. Here, Cl present in KClO_{3} is reduced and O present in KClO_{3} is oxidized. Since same element is not oxidized and reduced, so it is not a disproportionation reaction, although it looks like one.
(b)
$\mathrm{NH}_{4} \mathrm{NO}_{2} \longrightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Nitrogen in this compound has -3 and +3 oxidation number, which is not a definite value. So it is not a disproportionation reaction. It is an example of comproportionation reaction, which is a class of redox reaction in which an element from two different oxidation state gets converted into a single oxidation state.
(c) $4 \mathrm{KClO}_{3} \longrightarrow 3 \mathrm{~K}_{\mathrm{ClO}}^{4} 4+\stackrel{-1}{\mathrm{KCl}}$

It is a case of disproportionation reaction and Cl atom is disproportionating.
List of some important disproportionation reactions

1. $\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
2. $\mathrm{X}_{2}+\mathrm{OH}^{-}$(dil. $) \longrightarrow \mathrm{X}^{-}+\mathrm{XO}^{-} \quad(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$
3. $\mathrm{X}_{2}+\mathrm{OH}^{-}($conc. $) \longrightarrow \mathrm{X}^{-}+\mathrm{XO}_{3}^{-}$
F_{2} does not undergo disproportionation as it is the most electronegative element.
$\mathrm{F}_{2}+\mathrm{NaOH}$ (dil.) $\longrightarrow \mathrm{F}^{-}+\mathrm{OF}_{2}$
$\mathrm{F}_{2}+\mathrm{NaOH}$ (conc.) $\longrightarrow \mathrm{F}^{-}+\mathrm{O}_{2}$
4. $(\mathrm{CN})_{2}+\mathrm{OH}^{-} \longrightarrow \mathrm{CN}^{-}+\mathrm{OCN}^{-}$
5. $\mathrm{P}_{4}+\mathrm{OH}^{-} \longrightarrow \mathrm{PH}_{3}+\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
6. $\mathrm{S}_{8}+\mathrm{OH}^{-} \longrightarrow \mathrm{S}^{2-}+\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
7. $\mathrm{MnO}_{4}{ }^{2-} \longrightarrow \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}$
8. $\mathrm{NH}_{2} \mathrm{OH} \longrightarrow \mathrm{N}_{2} \mathrm{O}+\mathrm{NH}_{3}$
$\mathrm{NH}_{2} \mathrm{OH} \longrightarrow \mathrm{N}_{2}+\mathrm{NH}_{3}$
9. Oxyacids of Phosphorus $(+1,+3$ oxidation number $)$
$\mathrm{H}_{3} \mathrm{PO}_{2} \longrightarrow \mathrm{PH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{3}$
$\mathrm{H}_{3} \mathrm{PO}_{3} \longrightarrow \mathrm{PH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4}$
10. Oxyacids of Chlorine(Halogens) $(+1,+3,+5$ Oxidation number)
$\mathrm{ClO}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{2}^{-}$
$\mathrm{ClO}_{2}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}$
$\mathrm{ClO}_{3}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{4}^{-}$
11. $\mathrm{HNO}_{2} \longrightarrow \mathrm{NO}+\mathrm{HNO}_{3}$

- Reverse of disproportionation is called Comproportionation. In some of the disproportionation reactions, by changing the medium (from acidic to basic or reverse), the reaction goes in backward direction and can be taken as an example of Comproportionation reaction.

$$
\mathrm{I}^{-}+\mathrm{IO}_{3}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Balancing of redox reactions

All balanced equations must satisfy two criteria.

1. Atom balance (mass balance) :

There should be the same number of atoms of each kind on reactant and product side.
2. Charge balance:

The sum of actual charges on both sides of the equation must be equal.
There are two methods forbalancing the redox equations :

1. Oxidation - number change method
2. Ion electron method or half cell method

O Since First method is not very much fruitful for the balancing of redox reactions, students are advised to use second method (Ion electron method) to balance the redox reactions
Ion electron method : By this method redox equations are balanced in two different medium.
(a) Acidic medium
(b) Basic medium

- Balancing in acidic medium

Students are adviced to follow the following steps to balance the redox reactions by lon electron method in acidic medium

Example-21 Balance the following redox reaction :
$\mathrm{FeSO}_{4}+\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{MnSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}$
Solution. Step-I Assign the oxidation number to each element present in the reaction.

Step II :

Now convert the reaction in lonic form by eliminating the elements or species, which are not undergoing either oxidation or reduction.

$$
\mathrm{Fe}^{2+}+\stackrel{+7}{\mathrm{MnO}_{4}^{-}} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}
$$

Step III :
Now identify the oxidation / reduction occuring in the reaction

Step IV : Spilt the lonic reaction in two half, one for oxidation and other for reduction.

$$
\mathrm{Fe}^{2+} \xrightarrow{\text { oxidation }} \mathrm{Fe}^{3+} \mid \mathrm{MnO}_{4}^{-} \xrightarrow{\text { Reduction }} \mathrm{Mn}^{2+}
$$

Step V :
Balance the atom other than oxygen and hydrogen atom in both half reactions

$$
\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+} \quad \mid \quad \mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}
$$

Fe \& Mn atoms are balanced on both side.
Step VI :
Now balance O \& H atom by $\mathrm{H}_{2} \mathrm{O} \& \mathrm{H}^{+}$respectively by the following way : For one excess oxygen atom, add one $\mathrm{H}_{2} \mathrm{O}$ on the other side and two H^{+}on the same side.
$\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}$
(no oxygen atom)
$8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
Step VII :
Equation (i) \& (ii) are balanced atomwise. Now balance both equations chargewise. To balance the charge, add electrons to the electrically positive side.
$\mathrm{Fe}^{2+} \xrightarrow{\text { oxidation }} \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
$5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \xrightarrow{\text { Reduction }} \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

Step VIII :

The number of electrons gained and lost in each half -reaction are equalised by multiplying both the half reactions with a suitable factor and finally the half reactions are added to give the overall balanced reaction.
Here, we multiply equation (1) by 5 and (2) by 1 and add them :

$$
\begin{aligned}
& \mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} \ldots \ldots(1) \times 5 \\
& \stackrel{5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \quad \ldots(2) \times 1}{5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

(Here, at his stage, you will get balanced redox reaction in lonic form)

Step IX :

Now convert the lonic reaction into molecular form by adding the elements or species, which are removed in step (2).
Now, by some manipulation, you will get :

$$
\begin{aligned}
& 5 \mathrm{FeSO}_{4}+\mathrm{KMnO}_{4}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \frac{5}{2} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{MnSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4} \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

- Balancing in basic medium :

In this case, except step VI, all the steps are same. We can understand it by the following example:

Solved Examples

Example-22 Balance the following redox reaction in basic medium :

$$
{ }^{-}+\mathrm{CrO}_{2}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}
$$

Solution.

By using upto step V , we will get :

Now, students are advised to follow step VI to balance ' O ' and ' H ' atom.
$2 \mathrm{H}^{+}+\mathrm{ClO}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \quad \mid \quad 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CrO}_{2}^{-} \longrightarrow \mathrm{CrO}_{4}^{2-}+4 \mathrm{H}^{+}$
O Now, since we are balancing in basic medium, therefore add as many as OH^{-}on both side of equation as there are H^{+}ions in the equation.
$2 \mathrm{OH}^{-}+2 \mathrm{H}^{+}+\mathrm{ClO}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$
Finally you will get
$\mathrm{H}_{2} \mathrm{O}+\mathrm{ClO}^{-} \longrightarrow \mathrm{Cl}^{-}+2 \mathrm{OH}^{-}$
$4 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CrO}_{2}^{-} \longrightarrow \mathrm{CrO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+4 \mathrm{OH}^{-}$
Finally you will get
$4 \mathrm{OH}^{-}+\mathrm{CrO}_{2}^{-} \longrightarrow \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}$ \qquad
Now see equation (i) and (ii) in which O and H atoms are balanced by OH^{-}and $\mathrm{H}_{2} \mathrm{O}$ Now from step VIII

Solutions :

A mixture of two or more substances can be a solution. We can also say that "a solution is a homogeneous mixture of two or more substances," 'Homogeneous'means 'uniform throughout'. Thus a homogeneous mixture, i.e., a solution, will have uniform composition throughout.

Properties of a solution

- A solution is clear and transparent. For example, a solution of sodium chloride in water is clear and tranparent.
- The solute in a solution does not settle down even after the solution is kept undisturbed for some time.
- In a solution, the solute particle cannot be distinguished from the solvent particles or molecules even under a microscope. In a true solution, the particles of the solute disappear into the space between the solvent molecules.
- The components of a solution cannot be separated by filtration.

Concentration terms :
The following concentration terms are used to expressed the concentration of a solution. These are

- Molarity (M)
- Molality (m)

Mole fraction (x)
\% calculation
Normality (N)
ppm
O Remember that all of these concentration terms are related to one another. By knowing one concentration term you can also find the other concentration terms. Let us discuss all of them one by one.

Molarity (M) :
The number of moles of a solute dissolved in $1 \mathrm{~L}(1000 \mathrm{ml})$ of the solution is known as the molarity of the solution.
i.e., Molarity of solution $=\frac{\text { number of moles of solute }}{\text { volume of solution in litre }}$

Let a solution is prepared by dissolving w gm of solute of mol.wt. M in V ml water.
$\therefore \quad$ Number of moles of solute dissolved $=\frac{\mathrm{W}}{\mathrm{M}}$
$\therefore \quad \mathrm{V} \mathrm{ml}$ water have $\frac{\mathrm{w}}{\mathrm{M}}$ mole of solute
$\therefore \quad 1000 \mathrm{ml}$ water have $\frac{\mathrm{w} \times 1000}{\mathrm{M} \times \mathrm{V}_{\mathrm{ml}}} \quad \therefore \quad$ Molarity $(\mathrm{M})=\frac{\mathrm{w} \times 1000}{(\text { Mol. wt of solute }) \times \mathrm{V}_{\mathrm{ml}}}$
Some other relations may also useful.
Number of millimoles $=\frac{\text { mass of solute }}{(\text { Mol. wt. of solute })} \times 1000=\left(\right.$ Molarity of solution $\left.\times \mathrm{V}_{\mathrm{m}}\right)$
O Molarity of solution may also given as :
$\frac{\text { Number of millimole of solute }}{\text { Total volume of solution in } \mathrm{ml}}$
O Molarity is a unit that depends upon temperature. It varies inversely with temperature .
Mathematically: Molarity decreases as temperature increases.
Molarity $\propto \frac{1}{\text { temperature }} \propto \frac{1}{\text { volume }}$
O If a particular solution having volume V_{1} and molarity $=\mathrm{M}_{1}$ is diluted upto volume $\mathrm{V}_{2} \mathrm{~mL}$ than $M_{1} V_{1}=M_{2} V_{2}$
M_{2} : Resultant molarity
O If a solution having volume V_{1} and molarity M_{1} is mixed with another solution of same solute having volume $\mathrm{V}_{2} \mathrm{~mL}$ \& molarity M_{2}
then
$M_{1} V_{1}+M_{2}^{2} V_{2}=M_{R}\left(V_{1}+V_{2}\right)$
$M_{R}=$ Resultant molarity $=\frac{M_{1} V_{t}+M_{2} V_{2}}{V_{1}+V_{2}}$

Solved Examples

Example-23 149 gm of potassium chloride (KCl) is dissolved in 10 Lt of an aqueous solution. Determine the molarity of the solution $(\mathrm{K}=39, \mathrm{Cl}=35.5)$

Solution Molecular mass of $\mathrm{KCl}=39+35.5=74.5 \mathrm{gm}$

$$
\begin{array}{ll}
\therefore & \text { Moles of } \mathrm{KCI}=\frac{149 \mathrm{gm}}{74.5 \mathrm{gm}}=2 \\
\therefore & \text { Molarity of the solution }=\frac{2}{10}=0.2 \mathrm{M}
\end{array}
$$

The number of moles of solute dissolved in1000 $\mathrm{gm}(1 \mathrm{~kg})$ of a solvent is known as the molality of the solution.

$$
\text { i.e., } \quad \text { molality }=\frac{\text { number of moles of solute }}{\text { mass of solvent in gram }} \times 1000
$$

Let Y gm of a solute is dissolved in X gm of a solvent. The molecular mass of the solute is M_{0}. Then $\mathrm{Y} / \mathrm{M}_{0}$ mole of the solute are dissolved in X gm of the solvent. Hence

Molality $=\frac{Y}{M_{0} \times X} \times 1000$
O Molality is independent of temperature changes.

Solved Examples

Mole fraction (x) :

The ratio of number of moles of the solute or solvent present in the solution and the total number of moles present in the solution is known as the mole fraction of substances concerned.

Let number of moles of solute in solution $=n$
Number of moles of solvent in solution $=\mathrm{N}$

$$
\begin{array}{ll}
\therefore & \text { Mole fraction of solute }\left(x_{1}\right)=\frac{n}{n+N} \\
\therefore \quad & \text { Mole fraction of solvent }\left(x_{2}\right)=\frac{N}{n+N} \\
& \text { also } \quad x_{1}+x_{2}=1
\end{array}
$$

O Mole fraction is a pure number. It will remain independent of temperature changes.
\% calculation :
The concentration of a solution may also expressed in terms of percentage in the following way.

- \% weight by weight (w/w):It is given as mass of solute present in per 100 gm of solution.
i.e. $\quad \% \mathrm{w} / \mathrm{w}=\frac{\text { mass of solute in } \mathrm{gm}}{\text { mass of solution in } \mathrm{gm}} \times 100$
- \% weight by volume (w/v) : It is given as mass of solute present in per 100 ml of solution.
i.e., $\% \mathrm{w} / \mathrm{v}=\frac{\text { mass of solute in } \mathrm{gm}}{\text { volume of solution in } \mathrm{ml}} \times 100$
- \quad \% volume by volume (v / v) : It is given as volume of solute present in per $\mathbf{1 0 0} \mathbf{~ m l}$ solution.
i.e., $\% \mathrm{v} / \mathrm{v}=\frac{\text { volume of solute in } \mathrm{ml}}{\text { volume of solution in } \mathrm{ml}} \times 100$

Solved Examples
Example- $25 \quad 0.5 \mathrm{~g}$ of a substance is dissolved in 25 g of a solvent. Calculate the percentage amount of the substance in the solution.
Mass of substance $=0.5 \mathrm{~g}$
Mass of solvent $=25 \mathrm{~g}$
$\therefore \quad$ percentage of the substance $(\mathrm{w} / \mathrm{w})=\frac{0.5}{0.5+25} \times 100=1.96$

A ONE INSTITUTE - A SYNONYM TO SUCCESS, OFFICE - SCO 322, SECTOR 40 D, CHANDIGARH

Example-26
$20 \mathrm{~cm}^{3}$ of an alcohol is dissolved in80 cm^{3} of water. Calculate the percentage of alcohol in solution.
Solution
Volume of alcohol $=20 \mathrm{~cm}^{3}$
Volume of water $=80 \mathrm{~cm}^{3}$
$\therefore \quad$ Percentage of alcohol $=\frac{20}{20+80} \times 100=20$.
Hydrogen peroxide ($\mathrm{H}_{2} \mathrm{O}_{2}$)
$\mathrm{H}_{2} \mathrm{O}_{2}$ can behave both like oxidising and reducing agent in both the mediums (acidic and basic).

- Oxidising agent : $\left(\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}\right)$
(a) Acidic medium : $2 \mathrm{e}^{-}+2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
(b) Basic medium : $\quad \begin{gathered}2 \mathrm{e}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{OH}^{-} \\ \text {v. } f=2\end{gathered}$
- Reducing agent : $\left(\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}\right)$
(a) Acidic medium : $\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
v.f $=2$
(b) Basic medium : $\quad 2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$

$$
v . f=2
$$

Volume strength of $\mathbf{H}_{2} \mathbf{O}_{2}$: Strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ is represented as $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}$ etc.
20V $\mathrm{H}_{2} \mathrm{O}_{2}$ means one litre of this sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition gives 20L of O_{2} gas at STP.
Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is given as :

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2} \\
1 \text { mole } & \frac{1}{2} \times 22.4 \mathrm{LO}_{2} \text { at STP } \\
=34 \mathrm{~g} & =11.2 \mathrm{LO}_{2} \text { at STP }
\end{array}
$$

Volum estrengthof $\mathrm{H}_{2} \mathrm{O}_{2}$

- Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}(M)=$
11.2

Strength (in g/L) : Denoted by S
Strength $=$ Molarity \times Mol. wt $=$ Molarity $\times 34$

Hardness of water (Hard water does not give lather with soap)

Temporary hardness - due to bicarbonates of $\mathrm{Ca} \& \mathrm{Mg}$
Permanent hardness - due to chlorides \& sulphates of $\mathrm{Ca} \& \mathrm{Mg}$. There are some method by which we can soften the water sample.
(a) By boiling $: \quad 2 \mathrm{HCO}_{3}{ }^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{CO}_{3}{ }^{2-}$ or

By Slaked lime $\quad: \quad \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ca}^{2+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{CaCO}_{3}$
(b) By Washing Soda : $\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaCl}$
(c) By ion exchange resins : $\mathrm{Na}_{2} \mathrm{R}+\mathrm{Ca}^{2+} \longrightarrow \mathrm{CaR}+2 \mathrm{Na}^{+}$
(d) By adding chelating agents like $\left(\mathrm{PO}_{3}{ }^{-}\right)_{3}$ etc.

Parts Per Million (ppm)

When the solute is present in very less amount, then this concentration term is used. It is defined as the number of parts of the solute present in every 1 million parts of the solution. ppm can both be in terms of mass or in terms of moles. If nothing has been specified, we take ppm to be in terms of mass. Hence, a 100 ppm solution means that 100 g of solute is present in every 1000000 g of solution.

$$
\mathrm{ppm}_{\mathrm{A}}=\frac{\text { mass of } \mathrm{A}}{\text { Total mass }} \times 10^{6}=\text { mass fraction } \times 10^{6}
$$

Measurement of Hardness :

Hardness is measured in terms of ppm (parts per million) of CaCO_{3} or equivalent to it.
Hardness in ppm $=\frac{\text { mass of } \mathrm{CaCO}_{3}}{\text { Total mass of solution }} \times 10^{6}$

Solved Examples

Example-27 $0.00012 \% \mathrm{MgSO}_{4}$ and $0.000111 \% \mathrm{CaCl}_{2}$ is present in water. What is the measured hardness of water and millimoles of washing soda required to purify water 1000 L water?
 Solution. Basis of calculation $=100 \mathrm{~g}$ hard water

$$
\begin{aligned}
& \mathrm{MgSO}_{4}=0.00012 \mathrm{~g}=\frac{0.00012}{120} \text { mole } \\
& \mathrm{CaCl}_{2}=0.000111 \mathrm{~g}=\frac{0.000111}{111} \text { mole } \\
& \therefore \quad \text { equivalent moles of } \mathrm{CaCO}_{3}=\left(\frac{0.00012}{120}+\frac{0.000111}{111}\right) \text { mole } \\
& \therefore \quad \text { mass of } \mathrm{CaCO}_{3}=\left(\frac{0.00012}{120}+\frac{0.000111}{111}\right) \times 100=2 \times 10^{-4} \mathrm{~g} \\
& \text { Hardness (in terms of ppm of } \mathrm{CaCO}_{3} \text {) }=\frac{2 \times 10^{-4}}{100} \times 10^{6}=2 \mathrm{ppm} \\
& \mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaCl} \\
& \mathrm{NaSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{MgCO}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4} \\
& \therefore \quad \text { Required } \mathrm{Na}_{2} \mathrm{CO}_{3} \text { for } 100 \mathrm{~g} \text { of water }=\left(\frac{0.00012}{120}+\frac{0.000111}{111}\right) \text { mole } \\
& =2 \times 10^{-6} \mathrm{~mole} \\
& \therefore \quad \text { Required } \mathrm{Na}_{2} \mathrm{CO}_{3} \text { for } 1000 \text { litre water }=\frac{2 \times 10^{-6}}{100} \times 10^{6}=\frac{2}{100} \text { mole } \quad(\because \mathrm{d}=1 \mathrm{~g} / \mathrm{mL}) \\
& =\frac{20}{1000} \text { mole }=20 \mathrm{~m} \text { mole }
\end{aligned}
$$

Strength of Oleum :

Oleum is SO_{3} dissolved in $100 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. Sometimes, oleum is reported as more than 100% by weight, say y\% (where $y>100$). This means that ($y-100$) grams of water, when added to 100 g of given oleum sample, will combine with all the free SO_{3} in the oleum to give 100% sulphuric acid.
Hence, weight $\%$ of free SO_{3} in oleum $=80(y-100) / 18$

Example-28 What volume of water is required (in mL) to prepare 1 L of 1 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}($ density $=1.5 \mathrm{~g} / \mathrm{mL}$) by using 109% oleum and water only (Take density of pure water $=1 \mathrm{~g} / \mathrm{mL}$).
Solution. $\quad 1 \mathrm{~mole}_{2} \mathrm{SO}_{4}$ in 1 L solution $=98 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ in 1500 g solution $=98 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ in 1402 g water. Also, in 109% oleum, $9 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ is required to form 109 g pure $\mathrm{H}_{2} \mathrm{SO}_{4} \&$ so, to prepare $98 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$, water needed is $9 / 109 \times 98=8.09 \mathrm{~g}$.
Total water needed $=1402+8.09=1410.09 \mathrm{~g}=1410.09 \mathrm{~mL}$

MISCELLANEOUS SOLVED PROBLEMS (MSPS)

1. Find the relative atomic mass, atomic mass of the following elements.
(i) Na
(ii) F
(iii) H
(iv) Ca
(v) Ag

Sol.
(ii) $19,19 \mathrm{amu}$
(iii) 1, 1.008 amu , (iv) 40, 40 amu , (v) 108, 108 amu.
2. A sample of $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ ethane has the same mass as 10^{7} molecules of methane. How many $\mathrm{C}_{2} \mathrm{H}_{6}$ molecules does the sample contain?
Sol. Moles of $\mathrm{CH}_{4}=\frac{10^{7}}{\mathrm{~N}_{\mathrm{A}}}$

$$
\begin{aligned}
& \text { Mass of } \mathrm{CH}_{4}=\frac{10^{7}}{\mathrm{~N}_{A}} \times 16=\text { mass of } \mathrm{C}_{2} \mathrm{H}_{6} \\
& \text { So } \quad \text { Moles of } \mathrm{C}_{2} \mathrm{H}_{6}=\frac{10^{7} \times 16}{\mathrm{~N}_{A} \times 30} \\
& \text { So } \quad \text { No. of molecules of } \mathrm{C}_{2} \mathrm{H}_{6}=\frac{10^{7} \times 16}{\mathrm{~N}_{A} \times 30} \times \mathrm{N}_{A}=5.34 \times 10^{6} \text {. }
\end{aligned}
$$

3. From 160 g of $\mathrm{SO}_{2}(\mathrm{~g})$ sample, 1.2046×10^{24} molecules of SO_{2} are removed then find out the volume of left over $\mathrm{SO}_{2}(\mathrm{~g})$ at STP.
Sol. Given moles $=\frac{160}{64}=2.5$.
Removed moles $=\frac{1.2046 \times 10^{24}}{6.023 \times 10^{23}}=2$.
so left moles $=0.5$.
volume left at STP $=0.5 \times 22.4=11.2$ lit.
4. $\quad 14 \mathrm{~g}$ of Nitrogen gas and 22 g of CO_{2} gas are mixed together. Find the volume of gaseous mixture at STP.

Sol. Moles of $N_{2}=\frac{14}{28}=0.5$.
moles of $\mathrm{CO}_{2}=\frac{22}{44}=0.5$.
so total moles $=0.5+0.5=1$.
so vol. at STP $=1 \times 22.4=22.4$ lit.
5. Show that in the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, mass is conserved.

Sol.
$\begin{array}{lccc} & \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow & 2 \mathrm{NH}_{3}(\mathrm{~g}) \\ \text { moles before reaction } & 1 & 3 & 0 \\ \text { moles after reaction } & 0 & 0 & 2\end{array}$
Mass before reaction $=$ mass of 1 mole $\mathrm{N}_{2}(\mathrm{~g})+$ mass of 3 mole $\mathrm{H}_{2}(\mathrm{~g})$

$$
=14 \times 2+3 \times 2=34 \mathrm{~g}
$$

mass after reaction $=$ mass of 2 mole NH_{3}

$$
=2 \times 17=34 \mathrm{~g} .
$$

6. When x gram of a certain metal brunt in 1.5 g oxygen to give 3.0 g of its oxide. 1.20 g of the same metal heated in a steam gave 2.40 g of its oxide. shows the these result illustrate the law of constant or definite proportion
Sol. Wt. of metal $=3.0-1.5=1.5 \mathrm{~g}$
so wt. of metal : wt of oxygen $=1.5: 1.5=1: 1$
similarly in second case,
wt. of oxygen $=2.4-1.2=1.2 \mathrm{~g}$
so wt. of metal : wt of oxygen =1.2:1.2=1:1
so these results illustrate the law of constant proportion.
7. Find out $\%$ of $\mathrm{O} \& \mathrm{H}$ in $\mathrm{H}_{2} \mathrm{O}$ compound.

Sol. $\%$ of $\mathrm{O}=\frac{16}{18} \times 100=88.89 \%$

$$
\% \text { of } H=\frac{2}{18} \times 100=11.11 \%
$$

8. Acetylene \& butene have empirical formula $\mathrm{CH} \& \mathrm{CH}_{2}$ respectively. The molecular mass of acetylene and butene are 26 \& 56 respectively deduce their molecular formula.
Ans. $\quad \mathrm{C}_{2} \mathrm{H}_{2} \& \mathrm{C}_{4} \mathrm{H}_{8}$

Sol. $\quad \mathrm{n}=\overline{\text { Empirical formula mass }}$
For Acetylene :

$$
\mathrm{n}=\frac{26}{13}=2
$$

$\therefore \quad$ Molecular formula $=\mathrm{C}_{2} \mathrm{H}_{2}$
For Butene :

$$
n=\frac{56}{14}=4
$$

$\therefore \quad$ Molecular formula $=\mathrm{C}_{4} \mathrm{H}_{8}$.
9. An oxide of nitrogen gave the following percentage composition:

$$
\begin{array}{ll}
& N=25.94 \\
\text { and } & O=74.06
\end{array}
$$

Calculate the empirical formula of the compound.
Ans. $\quad \mathrm{N}_{2} \mathrm{O}_{5}$
Sol.

Element	\%/ Atomic mass	Simple ratio	Simple intiger ratio
N	$\frac{25.94}{14}=1.85$	1	2
O	$\frac{74.06}{16}=4.63$	2.5	5

So empirical formula is $\mathrm{N}_{2} \mathrm{O}_{5}$.
10. Find the density of $\mathrm{CO}_{2}(\mathrm{~g})$ with respect to $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$.

Sol. R.D. $=\frac{\text { M.wt. of } \mathrm{CO}_{2}}{\text { M.wt. of } \mathrm{N}_{2} \mathrm{O}}=\frac{44}{44}=1$.
11. Find the vapour density of $\mathrm{N}_{2} \mathrm{O}_{5}$

Sol. V.D. $=\frac{\text { Mol. wt. of } \mathrm{N}_{2} \mathrm{O}_{5}}{2}=54$.
12. Write a balance chemical equation for following reaction:

When ammonia $\left(\mathrm{NH}_{3}\right)$ decompose into nitrogen $\left(\mathrm{N}_{2}\right)$ gas \& hydrogen $\left(\mathrm{H}_{2}\right)$ gas.
Sol. $\mathrm{NH}_{3} \rightarrow \frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \quad$ or $\quad 2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$.
13. When $170 \mathrm{~g} \mathrm{NH}_{3}(\mathrm{M}=17)$ decomposes how many grams of N_{2} \& H_{2} is produced.

Sol. $\quad \mathrm{NH}_{3} \rightarrow \frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2}$

$$
\frac{\text { moles of } \mathrm{NH}_{3}}{1}=\frac{\text { moles of } \mathrm{N}_{2}}{1 / 2}=\frac{\text { moles of } \mathrm{H}_{2}}{3 / 2} .
$$

So moles of $N_{2}=\frac{1}{2} \times \frac{170}{17}=5$. So wt. of $N_{2}=5 \times 28=140 \mathrm{~g}$.
Similarly
moles of $\mathrm{H}_{2}=\frac{3}{2} \times \frac{170}{17}=15$.
So wt. of $\mathrm{H}_{2}=15 \times 2=30 \mathrm{~g}$.
14. $340 \mathrm{~g} \mathrm{NH}_{3}(\mathrm{M}=17)$ when decompose how many litres of nitrogen gas is produced at STP.

Sol. $\quad \mathrm{NH}_{3} \rightarrow \frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2}$ moles of $\mathrm{NH}_{3}=\frac{340}{17}=20$.

So moles of $\mathrm{N}_{2}=\frac{1}{2} \times 20=10$.
$\therefore \quad$ vol. of N_{2} at STP $=10 \times 22.4=224$ lit.
15. 4 mole of MgCO_{3} is reacted with 6 moles of HCl solution. Find the volume of CO_{2} gas produced at STP, the reaction is

$$
\mathrm{MgCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} .
$$

Sol. Here HCl is limiting reagent. So moles of CO_{2} formed $=3$.
So vol. at STP $=3 \times 22.4=67.2$ lit.
16. 117 gm NaCl is dissolved in 500 ml aqueous solution. Find the molarity of the solution.

Sol. Molarity $=\frac{117 / 58.5}{500 / 1000}=4 \mathrm{M}$.
17. 0.32 mole of LiAlH_{4} in ether solution was placed in a flask and 74 g (1 moles) of t-butyl alcohol was added. The product is $\mathrm{LiAlHC}_{1_{12}} \mathrm{H}_{27} \mathrm{O}_{3}$. Find the weight of the product if lithium atoms are conserved.

$$
[\mathrm{Li}=7, \mathrm{Al}=27, \mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16]
$$

Sol. Applying POAC on Li
$1 \times$ moles of $\mathrm{LiAlH}_{4}=1 \times$ moles of LiAlH C $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3}$
$254 \times 0.32=1 \times$ wt. of LiAlH C ${ }_{12} \mathrm{H}_{27} \mathrm{O}_{3}$.
wt. of LiAlH C ${ }_{12} \mathrm{H}_{27} \mathrm{O}_{3}=81.28 \mathrm{gm}$.
18. Calculate individual oxidation number of each S -atom in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ (sodium tetrathionate) with the help of its structure.

Sol.

A ONE INSTITUTE - A SYNONYM TO SUCCESS, OFFICE - SCO 322, SECTOR 40 D, CHANDIGARH

19. Find the average and individual oxidation number of $\mathrm{Fe} \& \mathrm{~Pb}$ in $\mathrm{Fe}_{3} \mathrm{O}_{4} \& \mathrm{~Pb}_{3} \mathrm{O}_{4}$, which are mixed oxides.

Sol. (i) $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is mixture of $\mathrm{FeO} \& \mathrm{Fe}_{2} \mathrm{O}_{3}$ in 1:1 ratio
so, individual oxidation number of $\mathrm{Fe}=+2 \&+3$
\& average oxidation number $=\frac{1(+2)+2(+3)}{3}=8 / 3$
(ii) $\mathrm{Pb}_{3} \mathrm{O}_{4}$ is a mixture of $\mathrm{PbO} \& \mathrm{PbO}_{2}$ in $2: 1$ molar ratio
so, individual oxidation number of Pb are $+2 \&+4$
\& average oxidation number of $\mathrm{Pb}=\frac{2(+2)+1(+4)}{3}=8 / 3$
20. Balance the following equations :
(a) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{+2}+\mathrm{O}_{2}$ (acidic medium)
(b) $\mathrm{Zn}+\mathrm{HNO}_{3}\left(\right.$ dil) $\longrightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{4} \mathrm{NO}_{3}$
(c) $\mathrm{CrI}_{3}+\mathrm{KOH}+\mathrm{Cl}_{2} \longrightarrow \mathrm{~K}_{2} \mathrm{CrO}_{4}+\mathrm{KIO}_{4}+\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$.
(d) $\mathrm{P}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{PH}_{3}+\mathrm{P}_{4}$
(e) $\quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{SiO}_{2}+\mathrm{C} \longrightarrow \mathrm{CaSiO}_{3}+\mathrm{P}_{4}+\mathrm{CO}$

Ans.
(a) $6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{MnO}_{4}^{-} \longrightarrow 2 \mathrm{Mn}^{+2}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
(b) $4 \mathrm{Zn}+10 \mathrm{HNO}_{3}$ (dil) $\longrightarrow 4 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{4} \mathrm{NO}_{3}$
(c) $2 \mathrm{CrI}_{3}+64 \mathrm{KOH}+27 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{CrO}_{4}+6 \mathrm{KIO}_{4}+54 \mathrm{KCI}+32 \mathrm{H}_{2} \mathrm{O}$.
(d) $6 \mathrm{P}_{2} \mathrm{H}_{4} \longrightarrow 8 \mathrm{PH}_{3}+\mathrm{P}_{4}$
(e) $2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{SiO}_{2}+10 \mathrm{C} \longrightarrow 6 \mathrm{CaSiO}_{3}+\mathrm{P}_{4}+10 \mathrm{CO}$
21. Calculate the resultant molarity of following
(a) $200 \mathrm{ml} 1 \mathrm{M} \mathrm{HCl}+300 \mathrm{ml}$ water
(b) $1500 \mathrm{ml} 1 \mathrm{M} \mathrm{HCl}+18.25 \mathrm{~g} \mathrm{HCl}$
(c) $200 \mathrm{ml} \mathrm{1M} \mathrm{HCl}+100 \mathrm{ml} 0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(d) $200 \mathrm{ml} \mathrm{1M} \mathrm{HCl}+100 \mathrm{ml} 0.5 \mathrm{M} \mathrm{HCl}$
(a) 0.4 M
(b) 1.33 M
(c) 1 M
(d) 0.83 M .

Ans.
Sol. (a) Final molarity $=\frac{200 \times 1+0}{200+300}=0.4 \mathrm{M}$.
(b) Final molarity $=\frac{1500 \times 1+\frac{18.25 \times 1000}{36.5}}{1500}=1.33 \mathrm{M}$
(c) Final molarity of $\mathrm{H}^{+}=\frac{200 \times 1+100 \times 0.5 \times 2}{200+100}=1 \mathrm{M}$.
(d) Final molarity $=\frac{200 \times 1+100 \times 0.5}{200+100}=0.83 \mathrm{M}$.
22. 518 gm of an aqueous solution contains 18 gm of glucose (mol.wt. $=180$). What is the molality of the solution.

Sol. wt. of solvent $=518-18=500 \mathrm{gm} . \quad \Rightarrow \quad$ so \quad molarity $=\frac{18 / 180}{500 / 1000}=0.2$.
23. 0.25 of a substance is dissolved in 6.25 g of a solvent. Calculate the percentage amount of the substance in the solution.
Sol. wt. of solution $=0.25+6.25=6.50$.

$$
\text { so } \%(w / w)=\frac{0.25}{6.50} \times 100=3.8 \%
$$

A ONE INSTITUTE - A SYNONYM TO SUCCESS, OFFICE - SCO 322, SECTOR 40 D, CHANDIGARH

24. A fresh $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is labelled 11.2 V . This solution has the same concentration as a solution which is :
(A) $3.4 \%(w / w)$
(B) $3.4 \% ~(v / v)$
(C) $3.4 \% ~(w / v)$
(D) None of these

Sol. Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}=\frac{\text { vol. } \text { strength }}{11.2}=\frac{11.2}{11.2}=1$
Now, $\quad \%(\mathrm{w} / \mathrm{v})=\frac{\mathrm{wt} \text {. of solute in } \mathrm{g}}{\mathrm{wt} \text {. of solution in } \mathrm{mL}} \times 100$

$$
\begin{aligned}
& =\text { Molarity } \times \text { Mol. wt. of solute } \times \frac{1}{10} \\
& =1 \times 34 \times \frac{1}{10}=3.4 \% \quad \text { Ans. (C) }
\end{aligned}
$$

25. Calculate the resultant molarity of following :
(a) $200 \mathrm{ml} \mathrm{1M} \mathrm{HCl}+300 \mathrm{ml}$ water
(b) $1500 \mathrm{ml} 1 \mathrm{M} \mathrm{HCl}+18.25 \mathrm{~g} \mathrm{HCl}$
(c) $200 \mathrm{ml} \mathrm{1M} \mathrm{HCl}+100 \mathrm{ml} 0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(d) $200 \mathrm{ml} \mathrm{1M} \mathrm{HCl}+100 \mathrm{ml} 0.5 \mathrm{M} \mathrm{HCl}$
(a) 0.4 M
(b) 1.33 M
(c) 1 M
(d) 0.83 M .

Ans.
Sol. (a) Final molarity $=\frac{200 \times 1+0}{200+300}=0.4 \mathrm{M}$.
(b) Final molarity $=\frac{1500 \times 1+\frac{18.25 \times 1000}{36.5}}{1500}=1.33 \mathrm{M}$
(c) Final molarity of $\mathrm{H}^{+}=\frac{200 \times 1+100 \times 0.5 \times 2}{200+100}=1 \mathrm{M}$.
(d) Final molarity $=\frac{200 \times 1+100 \times 0.5}{200+100}=0.83 \mathrm{M}$.
26. 518 gm of an aqueous solution contains 18 gm of glucose (mol.wt. $=180$). What is the molality of the solution.

Sol. wt. of solvent $=518-18=500 \mathrm{gm} . \Rightarrow$ so \quad molarity $=\frac{18 / 180}{500 / 1000}=0.2$.
27. 0.25 of a substance is dissolved in 6.25 g of a solvent. Calculate the percentage amount of the substance in the solution.
Sol. wt. of solution $=0.25+6.25=6.50$.

$$
\text { so } \%(w / w)=\frac{0.25}{6.50} \times 100=3.8 \%
$$

28. A fresh $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is labelled 11.2 V . This solution has the same concentration as a solution which is :
(A) $3.4 \%(w / w)$
(B) $3.4 \% ~(v / v)$
(C) $3.4 \% ~(w / v)$
(D) None of these

Sol. Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}=\frac{\text { vol. strength }}{11.2}=\frac{11.2}{11.2}=1$

$$
\text { Now, } \begin{aligned}
\%(\mathrm{w} / \mathrm{v}) & =\frac{\mathrm{wt} \text {. of solute in } \mathrm{g}}{\mathrm{wt} \text {. of solution in } \mathrm{mL}} \times 100 \\
& =\text { Molarity } \times \text { Mol. wt. of solute } \times \frac{1}{10} \\
& =1 \times 34 \times \frac{1}{10}=3.4 \% \quad \text { Ans. (C) }
\end{aligned}
$$

